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Abstract —A rigorous analysisof losslessinbomogeneouslyand aniso-
tropically filled waveguidesof arbitrarily shapedcrosssectionis presented.
The mode propagation constants squared appear as eigenvahses of a real

infinite-dimensional characteristic matrix, which is, in the general case,

nonsymmetric. Complex conjugate pairs of eigenvalues are then possible,

which give rise to complex modes. Modes at cutoff are shown to be either

TE or TM with real cutoff frequencies. An investigation of the power flow

shows that backward-wave modes may exist as well. Different orthogonal-

ity relations are derived from which the power coupling between complex

modes is investigated.

I. INTRODUCTION

A BACKWARD WAVE is one in which the energy

flows in the opposite direction to the wavefronts.

Since, in the absence of reflections, energy must travel

away from the generator, the wavefronts of a backward

wave travel toward the generator. These waves have been

known for a long time to propagate in periodic structures

(see, e.g., [1]). The possibility of backward-wave modes in

a circular waveguide coaxially loaded by a dielectric rod

was first reported in [2]. The conditions under which

backward-wave modes with unity azimuthal dependence

can exist in these waveguides have been investigated (e.g.,

[3], [4]). It has been shown there that the degeneracy of the

TEl~ and TMIH modes at cutoff is associated with back-

ward-wave propagation above cutoff. Potential applica-

tions of backward-wave modes in such waveguides have

been discussed in [5]. In [6] and [7], it has been shown that

backward-wave modes can also exist in semicircular, rect-

angular, and trough waveguides with dielectric inserts.

Experimental verifications of backward-wave propagation

in some of these structures have been reported (e.g. [7],

[8]).

Complex modes are modes with complex propagation

constants which can be supported by lossless guiding

structures. Due to the lossless nature of the structure

supporting such modes, they always exist in pairs, with

complex conjugate propagation constants of opposite sign.

The electric field of one mode of any pair does not couple

to the magnetic field of the same mode. Instead, it couples

to the magnetic field of the other mode in such a way that
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the total power carried by the two modes is purely reac-

tive. Complex modes in a circular waveguide containing a

coaxial dielectric rod were first predicted in [9]. It was

shown there that the appearance of a backward-wave

mode in a certain frequency band is associated with the

appearance of complex modes in a lower frequency band.

It has also been shown that complex modes can occur

under certain conditions even if there is no frequency

range in which backward-wave modes can propagate. More

theoretical and experimental investigations on complex

modes in dielectric loaded circular waveguides have been

reported (e.g., [10]–[13]).

Complex modes in a shielded rectangular dielectric image

guide, which can be considered as a rectangular waveguide

with rectangular dielectric insert, have been reported in

[14]. The relevance of complex modes, in conjunction with

the analysis of the transition from a rectangular waveguide

to a shielded dielectric image guide, has been described in

[15], which the reader can refer to for a deeper understand-

ing of the interesting characteristics of complex modes.

We have recently shown that both complex and back-

ward-wave modes can exist in finlines [16], [17]. The effect

of ignoring complex modes on the completeness of the set

of normal modes has been investigated in [18] in conjunc-

tion with finline discontinuity problems. It has been stated

in [17], without proof, that complex and backward-wave

modes are believed to exist in any planar guiding structure

with closed conducting boundaries.

In this contribution, this statement will be proved rigor-

ously for the general case of inhomogeneously and aniso-

tropically filled waveguides with arbitrarily shaped cross

sections.

II. INHOMOGENEOUSLY FILLED WAVEGUIDES

Consider an inhomogeneously filled waveguide of arbi-

trarily shaped cross section S and perfectly conducting

boundaries, as shown in Fig. 1. Th~ longitudinal and the

transverse coordinate vectors are zk and r, respectively.

The filling medium is assumed to be lossless and to have a

real transversally dependent relative permittivity and a

constant relative permeability c, = c,(r) and p,= 1, respec-

tively. The transverse inhomogeneity of c, can be treated

as a polarization current J exciting the corresponding

empty waveguide. This current is then given by

.l=jtico(c,(r) -l)E. (1)
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Fig. 1. An inhomogeneously filled waveguide with an arbitrarily s$aped

cross section.

Let the axial electric (magnetic) field of the nth TM

(TE) mode of ihe empty waveguide be e=.(r). exp( – y.,z)

(hz.(r). exp ( – Y. fiz)), with corresponding cutoff wave-

number k.e(k.~). Then

~~ez. i- k~,ezn = O y:,= k~. – k:

V;hz. -t- k;kh,. = O y;~ = k;~ – k; (2)

where subscripts t and z refer to transverse and longitudi-

nal components, respectively, and k: = U2p ~c~. Due to the

orthogonal properties of these modes [19], they may be

normalized according to

where tlti~ is the Kronecker delta. It will then be possible

to choose ez. and h,. as real functions.

Expanding the transverse and longitudinal components

of the electromagnetic field with respect to the TM and TE

normal modes of the corresponding empty waveguide,

substituting these expansions into Maxwell’s equations,

and making use of the, orthogonality relations (3), one

obtains the interrelations between the different expansion

coefficients as well as their relations to the exciting current

J. This procedure is well described in [20]; thus, only final

expressions are given here.

The transverse and longitudinal components of the elec-

tromagnetic field are expanded as

(Et= e-@ ~ ( – Am/k., )V,e..
n

+ ~(jq@?Jkp,)(~ Xv,hZ.)}
n

~,=e-JBz(x(-jP~./knh)v,hzn
n

Using (l)–(5), it can be shown that the expansion coeffi-

cients A”, B., and D. are related by the following infinite

system of linear equations:

([~] -k:[S])D=jP[S]A (6a)

[~e]A-j@= -jtipOIT]B (6b)

(k:[Rh]-[Ah])B -/32B=j@T]’A. (6c)

A, B, and D are column vectors with elements A., B.,

and D., respectively, [Ah ] is a diagonal matrix with ele-

ments k~h, [ Re], [ Rh ], and [S] are real symmetric matrices,

[T]’ is the transposed matrix of [T], both being real, and

[1] is the identity matrix. All matrices and column vectors

of (6) have infinite dimensions. The elements of [R’], [Rh],

[S], and [T] are given by

%n=(l/knhkmh)&r(vthzn”vthzm) ds

At this stage, it is important to state that the above-men-

tioned formulation does not at all represent an easier

alternative for the analysis of the well-known special cases

of inhomogeneously filled waveguides, e.g., dielectric-slab-

loaded rectangular waveguide or dielectric-rod-loaded cir-

cular waveguide. Other methods, e.g., [21]–[23], are much

more promising as far as the special cases for which they

are formulated are concerned. The present formulation, on

the other hand, is valid for the general case of waveguides

with arbitrarily shaped cross section and arbitrary inhomo-

geneity of the filling medium. Furthermore, the general

mode characteristics such as completeness and orthogonal-

ity can be studied directly by using the present approach

rather than the other computationally oriented ones.

A. The Homogeneously Filled Waveguide as a Special Case

If ~, is constant over the waveguide cross section, the

Hz= e-f$z~k~,B~hz~ matrices appearing in (6) take simple forms, namely
‘4) [l?’] = ~,[1], [R!] = cJI], [S] = <r[Ae]-’,

n
and [T] = O,

where a z dependence e “p’ is assumed; ~ is the unit
where [A’] ‘is ‘a diagonal matrix with elements k~e. Then

(6) reads
vector in the lon~tudinal direction and A., B., and D.

are series expansion coefficients. The expansion coeffi- (c,k;[I]-[Ae])D =~2D (8a)

cients are rel~ted to the exciting current J ‘by
(crk;[l]-[Ah])B =~2Z?. (8b)

A solution of these equations is either A = O = D, B.=

B#BM, and P 2 = c,k~ – k~h, which represents the mth TE

mode, or B = O, D. = D/i.W, A. = (.jP,/t,)~#.~, and
/32 = ~,k; – k2~,, which represents the m thTM mode.
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B. Modes at Cutoff

Setting /3= O, (6) reads

([ Ah]-k:([~’]-[T] ’[lV-’[T])}B=O (9a)

([1] -k~[s])D=O. (9b)

These equations mean that there exist two sets of modes at

cutoff. The first set has D = O and A # O, B # O; the

second set has A = O, B = O, and D # O. Substituting

~ = O in (4), we find that H,= O, E== O for the modes of
the first set, whereas El = O, Hz = O for the modes of the

second set. We can then conclude that modes at cutoff are

either TE characterized by (9a) or TM characterized by

(9b). Due to the symmetry of the real matrices [Ak], [~h],

([T] ‘[~’] - l[T]), and [S], the squares of the cutoff wave-

numbers of both TE and TM modes, which appear as the

eigenvalues of (9a) and (9b), respectively, are all real (see,

e.g., [24]).

C. Complex Modes

Eliminating D by using (6a), we get the following eigen-

value equation:

[

(W-[ S]-l)[R’l jw,(k;[~]-[S]-l)[~]

–joto[T]’ (k~[lth]-[A’]) 1
“[:1=~’[:1“0)

To have a real characteristic matrix, we use the trans-

formation

A=fiA’ B=(j/fi)B’ (11)

where A is a real positive constant. The eigenvalue equa-

tion (10) then reads

slab-loaded rectangular waveguide. We can conclude then

that the characteristic matrix of (12) is, in general, real and

nonsymmetric. This means that its eigenvalues (~ 2) are

either real or complex conjugate pairs, because they are

zeros of a polynomial of infinite order which has real

coefficients. Complex conjugate pairs of ~ 2 characterize

the so-called complex modes.

D. Orthogonality Relations

Coupling between modes of lossless guiding strictures

can be described by either of the two quantities

Pz, =~(ezxh~). dS Q1, =~(elxlz,). dS (14)
s

where e, and h, are the transverse electric and magnetic

field vectors of the i th and jth modes, respectively, and *

denotes the complex conjugate. Using (2)-(4) and (6a), it

is readily proved that

P,, = /3,*kO(ZOB;BJ* – YOA;[C]Ay )

Ql, = - P’,k,(-z,B:B’, + YOA:[C]A,) (15)

where [C] = ([S]–l – k~[I])–l, 20 =l/YO is the free-space

intrinsic impedance, and the superscript t denotes the

transpose operation. As is shown in Appendix I, the cou-

pling coefficients Pi, and Q,J obey the orthogonality rela-

tions

(P~-B;2)P,, =0 (B:-B’)QZ, =O. (16)

All nondegenerate modes, both the complex and the non-

complex, are orthogonal in the Q sense. On the other

hand, only noncomplex nondegenerate modes are orthogo-

nal in the P sense. In particular, all complex modes have

P,, = O, which means that an individual complex mode can

[

(~:[~]-[~]-’)[Re] (- W/A)(k:[I]-[S]-l)[T] At

–(J@[T]r (k~[RA] -[A’]) ~[B]=82[~! ’12)

The two diagonal submatrices of the characteristic matrix

in (12) are real and symmetric. For the total characteristic

matrix to be symmetric, both matrices [S] and [T] must

satisfy

([s] -1-(kt-~2Yi)[~]) [7’]=0 (13)

where YO is the free-space intrinsic admittance. Equation

(13) means that either [T] = O or the different columns of

[7’] are the eigenvectors of [S]- 1 which correspond to the
same eigenvalue (k? – A2Y~) [24]. The vanishing of [T]

leads to the vanishing of the off-diagonal subrnatrices of

the characteristic matrix in (12). The TM and TE parts of

the field, which are represented by A‘ and B‘, respectively,

must then be decoupled. Modes of TE or TM type exist,

however, only in a very limited number of special cases,

e.g., in homogeneously filled waveguides or as modes

without azimuthal dependence in rotational symmetrically

filled circular waveguides (as will be shown later). The

alternative condition on the columns of [T] cannot be

fulfilled even for such simple structures as the dielectric-

carry neither active nor reactive power. Such a mode

behaves in this aspect like modes at cutoff. Pairs of com-

plex modes which have complex conjugate ~ 2 can just

carry reactive power, as will be shown shortly. A similar

result has been obtained for finline complex modes as a

result of numerical investigations [17].

We will now investigate the modes corresponding to the

two complex conjugate eigenvalues ~~ and ~~ = (~~) *.

From the four possible modes, only two can be excited to

the right of the plane of excitation. If we allow a very small

but still finite amount of loss, it can be proved in a way

similar to that in Appendix I that P,l is very small but still

finite. The propagation constants fll and & of the modes,

which can be excited to the right of the plane of excitation,

must then show a negative imaginary part. (Note that the

time and longitudinal dependence have been assumed to

be e ‘J’” and e ‘J~’, respectively.) The corresponding two

roots of ~~ and ~~ can then be written as

~1=~’–j~’,p2=–fl~=-fir-ja~ (17)
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where a’ and /3’ are positive. Due to the real nature of the

characteristic matrix of (12), we have

A$=A{* B~=B{*. (18a)

Using (11), we get

A2=A~ B2=– B1* (18b)

and with (15), (17), and (18b), we obtain

P21=– P;. (19)

This result has been used in [17] to show, in a general way,

that a pair of complex modes can carry only pure reactive

power so that they behave as a whole evanescently.

E. Backward-Wave Modes

Using (15) and (6a), the total power carried by a single

mode can be written as

P=ko{(zop*)B’B* –(Yo/p)D’[c]-’D*}. (20)

Referring to (9b), let DC. be the eigenvector of the n th TM

cutoff mode, which corresponds to a cutoff wavenumber

ken. Due to the real symmetric nature of [S], the eigenvec-

tors DC., n=l,2,. , ., can be chosen to constitute a real

orthonormal set [24]. The matrix [W], whose n th column is

DCn, i.e.,

[W]=[DC1 DC2... D]....] (21)

is then unitary. Because [S] and [C] are commutative, they

share the same set of eigenvectori. It is then easily proved

that DC. is an eigenvector of [C]- 1, which corresponds to

an eigenvalue ( k~~ – k;). Transforming D in (20) accord-

ing to the unitary transformation

D=[W]~ (22)

this equation can be written as

P=kO((ZO~*)~lB~ 12+( Yo/@~(k~-k~~)@~12)
n n

(23)

where B. and _~~ are the n th elements of the column

vectors B and D, respectively.

Equation (23) shows that for propagating modes with

real positive ~, P is also real (as it should be) and can be

either positive, which corresponds to forward-wave modes,

or negative, which corresponds to backward-wave modes.

In particular, let us investigate one of the modes, which

becomes TM at cutoff, near its cutoff wavenumber (say

kC~). From (9), (21), and (22), it is easily shown that
B.+ 0, ~~ - K~~~ as kO * kC~, where K is a constant. If

we assume that the term (k; – k~~ ). {K 12 dominates the

other terms of (23) as kO -+ kC~, we get

P + (kOYo/~)(k~– k~m)lK12 as ko~k.~. (24)

We have now two possibilities, which are shown in Fig. 2.

In the first case, which is shown in Fig. 2(a), the mode is

evanescent for k. < kC~ and propagating for k. > kC~.

Equation (24) shows that the mode is capacitive for k.<

k .~, because ~ = – jl~l and hence P is negative imagina-

ry. For k. > k,~, the mode represents a forward wave,
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Fig. 2. The two possibilities for a mode which becomes TM at cutoff.
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Fig. 3. The cross section of a rotational symmetrically filled circular

waveguide.

because P and, hence, the group velocity are positive,

which is confirmed by the increase of ~ versus ko. In the

second case, which is shown in Fig. 2(bJ the mode is

propagating for k.< kC~ and evanescent for k. > kC~.

Equation (24) shows that the mode is inductive for k.>

k ,~. For k.< kC~, the mode represents a backward wave,

because both P and the group velocity are negative. This is

confirmed now by the decrease of B versus k..

F. Rotational Symmetrically Filled Circular Waveguide

This structure is the general form of the dielectric-rod-

loaded circular waveguide, which most of the early pub-

lications about complex modes dealt with (e.g., [9]-[13]).

The purpose of studying this special case is to explain

some related features, e.g. why must complex modes show

azimuthal dependence?

Consider’ the rotational symmetrically filled circular

waveguide whose cross section is shown in Fig. 3. The

relative permittivity of the filling medium is assumed to

depend on the radial coordinate r only, i.e., c,= c,(r).

Each mode of the corresponding empty waveguide is char-

acterized by two indices, one for the r dependence and the
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other for the rp dependence. The r dependence index will

be used as a subscript, while that of the cp dependence is

used as a superscript set in parentheses. The longitudinal

electric and magnetic fields of the different empty-guide

modes can then be written as

ef~) = VJ’)J (k~jr) sin (i@ + O;i))

JI:J = lJ’J<(k~~r) sin(ic$ + t:)) (25)

where J, denotes the Bessel function of the first kind and

i th order, and VJ’J, Ii’) are normalizing constints. The

column vectors A, B, and D are written as

II

~ (o)

~(l)

x= : (26)

X(O

where the elements of the subvector X(i) are denoted by

Xii). Matrices [l?’], [l?h], [~], [Afi], [S], and

written as

1

[Z(OO)] [2(01)] . . . [z(oJ)] . ..-

[Z(W] [Z(W] . . . [’z(lJ)] . . .

[z] = :

[Z(W] [z(z1)] . . . [Z(j~)] . . .

[T] ar~

(27)

where the elements of the submatrix [ Z(iJ)] are denoted by
z::).

Carrying out the integrations in (7) and keeping in mind

that e, is T independent, it is easily shown that all

off-diagonal submatrices vanish. This confirms the fact

that the radial inhomogeneity of the filling medium cou-

ples only those empty-guide modes which have the same

azimuthal dependence. Equation (6) can then be written

for the individual subvectors A(’), B(’), and D(’), which

represent the i th q dependence, as

([~]- k;[S(i)])D(ZJ = j~[s()]A(l) (28a)

[~e(O]A(~) - j~D(’) = - japo[T(2) ]B(’) (28b)

(k;[~’(’J]-[Ah(’)])B(’) -~’11(’) = jUCo[T@)]’A(’)

(28c)

where superscript (ii) has been replaced by just (i).

Modes without rp dependence (i.e., those for i = O) have
[T(o)] = O. This has the effect of decoupling the TE from

the TM part of the field. Substituting i = O and [T(o)]= O

into (28) and eliminating D(o), we get

(k~[l]- [~(0) ]-’)[~e(0)]~(O) =~2A(0) (29a)

(k;[~~(0)]-[A~(O) ]) B(O) =~’B(O). (29b)

Equation (29a) is the eigenvalue equation of the TM

modes, whereas (29b) is that of the TE modes. Both have

real symmetric characteristic matrices, which lead to real

values of ~ 2 for both types of modes. We can conclude

then that no complex modes can exist in the rotational

symmetrically filled circular waveguide without showing

azimuthal dependence.

G. Rectangular WaveWide with One-Dimensional

Inhomogeneity

This structure represents a generalization of the single-

slab or multislab-loaded rectangular waveguide, which is

well investigated in the literature (see, e.g., [19], [21] –[23]).

It is not, however, intended to produce (or reproduce)

numerical results. The other methods, e.g., [21] –[23], are

much more efficient in this aspect. Instead, we are aiming

to confirm what has been stated in [19], namely that the

modes of such a structure are all noncom jiex.

Consider the rectangular waveguide whose cross section

is shown in Fig. 4. The relative permittivity of the filling,.
medmm is assumed to be x dependent. Because each of

the corresponding empty-guide modes is characterized. by

two indices, we use the x dependence index as a subscript

and the y dependence index as a superscript set in

parentheses. The longitudinal electric and magnetic field

components of the empty-guide modes are given by

e~~)= V~i) sin ( nrx/a ) sin ( iryjb )

h$~ = l~’)cos (nrx\a) cos (i~y/b). (30)

In the above equation, i = 1,2,. ... n = 1,2, . . . for e~~)

while i=0,1,2, -.., n= 0,1,2, . . . for h$~ (i= n = (1 is ex-

cluded).

Column vectors A, B, and D can then be written as in

(26). The subvectors of A and D, which represent the TM

part of the field, have i =1,2. . . ; their elements have

n=l,2, . . . . On the other hand, the subvectors of B,

which represent the TE part, have i = 0,1,2, . . . and their

elements have n = 0,1,2,. 0., except for the elements of

B(o), which have n =1,2, . . . .

Matrices [it’], [llh], [Ae], [AA], [S], and [T] can also be

written as in (27). The submatrices of [R’], [Ae], and [S]

have i =1,2,. 0., j =1,2,. .0, and their elements have n =

1,2,... ,m=l,2,3, . . . . The submatrices of [l?A] and [Ak],

on the other hand, have i = 0,1,2,. ... j = 0,1,2,. . .,while

their elements have n = 0,1,2,. ... in = 0,1,2,. ... with (i

= n = O) and (j = m = O) being excluded. The submatrices

of [T], which represents the coupling between the TE and

TM parts of the field, have i =1,2,. . . . j = 0,1,2,. ... and

their elements have n=l,2,. . .,m=(),l, z,.. ., with (j=

m = 0) being excluded.

Performing the integrations of (7) and taking into

account that c. does not depend on y, it is readily proved

that all off-diagonal submatrices or, more precisely, the

submatrices having i # j, vanish. Empty-guide modes with

different y dependence are then decoupled. Equation (6)

can then be separately written for the individual compo-

nents showing the same y dependence. For i = O, (6) is

reduced to

(k~[Rh(0)]-[Afi(O) ]) B(O)= p2B~OJ (31)

where superscript (00) has been replaced by just (0). This

confirms that modes which are y independent must show a
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Fig. 4. The cross section of a rectangular waveguide with x-dependent

cr.

pure TE field. The characteristic matrix of (31) is real and

symmetric, and all its eigenvalues ~ 2 are then real.

For i #O, (6) is reduced to an equation which is similar

to (28) with superscript (ii) being replaced by (i). To

simplify the notation, superscript (i) will be omitted from

now on. Equation (6) will then be used in the sense that all

matrices and column vectors denote the i th submatrices

and subvectors, respectively.

The different structures of the matrices and column

vectors representing TE and TM parts leads to some

difficulties, which can be overcome if we carry out the

following modifications. Column vectors A and D are

modified to A- and B, respectively, according to

[1z=;. (32a)

Let N denote a colmim vector with zero elements. Matrices

[he], [Ae], and [S] are then modified to [i’], [k], and [j],

respectively, according to

(32b)

The coupling matrix [T] is finally modified to [~] by

‘1[f]=[;;. (32c)

Matrices such as [~] are in fact singular. They can, how-

ever, be inverted if we use their special algebra, which is

presented in Appendix II. Equation (6) can now be written

with the modified matrices and vectors as

([wwilp=mli (33a)

[fie]/i’-jL3fi= -jUpo[$]B (33b)

(k;[R’]-[A’])B -~2B=jucO[f]’~. (33c)

Adjusting the normalization coefficients V. and 1. of (30)

according to (3), all matrices of (33) can be written in

terms of only three matrices, namely [An], [N], and [Fc].

[A”] is a diagonal matrix with elements (nT/a), n =

0,1,2, ---- The elements of [F’] and [Fc] are given by

F;~ = (2/ak#~)~aC,(X) sin(nrx/a) sin (mnx/a) dx
o

R= (_/aknk.)/acr(x)cos(nmx/a)
o

.cos(rrzmx/a) dx (34)

where co. = (2- 8..) and k:= k~e = k~k = (in~h)z +

(n T/a)2. The matrices of (33) are related to [A”], [F’], and

[Fc] by

[A’] = (in/b) 2[l]+[An]2

[&] = (i~/b)2[f]+[A”]2

[R’] = [An][~][An] +(im/b)2[J~c]

[Ae] = [A”][Fc][A”] +(i~/b)2[@]

[s] = [m]

[~] = (im/b)([&][A”]- [An][,FC]).

Now let V(x) and 1(x) be two column vectors

elements are proportional to the series expansion

cients of the electric and magnetic field x components EX

and HX, respectively. Using (4), these vectors are related to

A-,’ B, and D by

V(xJ=j[A”]~+upO(im/b)B~

~[x) =/3[A”]B + co~O(im/b)~. (36)

Substituting (35) into (33) and using (36), the following

two decoupled equations are obtained:

[Ae](k~[S]-[1])1(x)=~21(x)

(k;[A’]-[An][~] -’[An] )[Fc]@)

(37a)

= (~’ +(in/b):’)Vtx). (37b)

(35)

whose

coeffi-

Equations (37a) and (37b) are, in fact, the eigenvalue

equations of the LSE and LSM modes, respectively [19].

Both have real symmetric characteristic matrices, which

means that all eigenvalues are real. Equations (31) and (37)

confirm what has been formulated in [1(9] by using a

completely different approach, namely that the modes of a

rectangular waveguide with one-dimensional inhomogene-

ity are of either the LSE or the LSM type and that they are

always noncomplex modes; i.e., they always have real

values of /32.

III. HOMOGENEOUSLY FILLED WAVEGIJIDES WITH

ANISOTROPIC MEDIA

Consider now the waveguide shown in Fig., 1 being

homogeneously filled with a medium with permittivity

tensor

I I[Cr]= -jJc 6, 0 . (38)

o 0 6,

The relative permeability is still assumecl to be unity.

Equation (1) then reads

J=j6xo([fr]-[I])li (39)

where [l] is the idem factor (unit dyadic). Tlhe longitudinal

and transverse components of the polarization current J
can then be written as

JZ = jtico(cz-l)l?,

~= jueo{(cl–l)Et+ j~(Ef Xr$)}. (40)
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Substituting (4) and (40) into Maxwell’s equations and

making use of (2) and (3), the following system of matrix

equations is obtained, which relates the column vectors A,

B, and D:

j&= A=([Ae]-czk;[I])D (41a)

Ct/l-j~D =-qLoI([U]B (41b)

[U]{[A’] +(j32-@~)[l]}B= tiCOICA. (41c)

Here, [U] is a real nonsymmetric matrix whose elements

are given by

APPENDIX I

To prove the orthogonality relations (16), we rewrite (6)

in the following form:

Dz=j&[CIA, (Al)

[R’] Ai+@[C]X41= -jkoZo[z’]BZ (A2)

where subscript i denotes the ith mode. Conjugating (A2)

for the jth mode and premultiplying by YOA~, we get

YOA;[~’]A~ +YO~,*2A:[C]A~ =jkOA:[T]~*. (A4)

Unm = (l/k.,k~h)~ (V,ez..V,h,~) dS. (42) ~&*P:~t$$ for the ith mode and postmultiplying by
s OJ

Due to the individual completeness property of the Zoll;([Ak]– k:[Rh])Bj* + Zofl:B;Bj* = – jkoA:[T]BJ*.

infinite sets { ez~} and { h,~ }, each ez~ can be expanded (A5)
over the set { h,~ } and vice versa. The series expansion

coefficients for both cases are proportional to Unm. Carry-
By adding (A4) and (AS), we find

ing out the gradient operation on these expansions and Zo~12Bt’BJ*+ Yo~J*2A: [ C ] A:
taking care of the step discontinuities which may exist at

the contour enclosing the guide cross section, the following
—— –Zol?;([A~] -k~[l?~])BJ*

identity can be proved: –YOA:[R’]A; . (A6)

[u][A’]=[A’][u]. (43) Subscripts i and j in (A6) can be interchanged. Taking

Substituting (43) into (41), the following eigenvalue equa-
then the transposed conjugate form results in

tion is obtained: ZOPJ*2B:BJ* + YO@Aj [ C] A;

[

(,,/t=)(c,k:[I] -[Ae]) tipo(~/c=)(,Zk; [I]-[&])

1

—— –ZoB;([Ak] –k; [Rfi])B~*

tMoK[~] (ctk:[I]-[Ae]) –YoA; [Re]A~. (A7)

“[hJ=~2[hJ’44)
Its characteristic matrix is again real and nonsymmetric.

Complex modes are consequently possible in anisotropi-

cally filled waveguides.

Most of the results which have been obtained for inho-

mogeneously filled waveguides are equally valid for an-

isotropically filled waveguides. Modes at cutoff and

backward-wave modes in both structures have similar

characteristics. Hence, no further investigations are needed

for anisotropically filled waveguides.

IV. CONCLUSIONS

Inhomogeneously filled and anisotropically filled loss-

less waveguides of arbitrarily shaped cross section have

been rigorously analyzed. It has been shown that complex

and backward-wave modes can be supported by these

structures. Modes at cutoff have been shown to have real

cutoff frequencies and to be either of TE or of TM type.

different orthogonality relations have been investigated.

The modes of rotational symmetrically filled circular wave-

guides which show no azimuthal dependence have been

shown to be noncomplex and either TE or TM. Modes of

rectangular waveguides with one-dimensional inhomogene-

ity are either of LSE or of LSM type. No complex modes

can be supported by these structures.

From a comparison between (A6) and (A7), we find now

The procedure described so far is repeated but without

taking the complex conjugate forms. This yields

(@-#) (zoB:~+yoA:[C]AJ) =0. (A9)

The orthogonality relations (16) now follow directly from a

comparison between (A8), (A9), and (15).

APPENDIX II

Let [K] and [L] be (IV X N) square matrices and [M]

be an ( iV x (N + 1)) matrix. Let also X and Y be an

(N x 1) and an ((iV + 1) x 1) column vector, respectively,

and let N be an (N x 1) column vector whose elements

are all zero. Using (32), -~, ~, and ~Aare all ((N+ 1) x 1)

column vectors, while [K], [L], and [M] are all ((N +1) x

(N+ 1)) square matrices. We will now prove some identi-

ties:

= ([ K~]). (A1O)

In particular, if [ L] = [K]- 1, [~] plays the same role as the

inverse of [~] with respect to the modified identity ma-
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trix [1]:

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

‘ [13]

[14]

[15]

[16]

‘i’”i=[: J;I”WIAJ
=([=x)

[N’]+=[J,.Y][A2]. Y= ~M1

= ([WY)

[fo]rx= [N [M] ’].[:]

(All)

(A12)

= [A4]’.x. (A13)
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