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Complex and Backward-Wave Modes in

Inhomogeneously and Anisotropically
Filled Waveguides
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Abstract — A rigorous analysis of lossless inhomogeneously and aniso-
tropically filled waveguides of arbitrarily shaped cross section is presented.
The mode propagation constants squared appear as eigenvalues of a real
infinite-dimensional characteristic matrix, which is, in the general case,
nonsymmetric. Complex conjugate pairs of eigenvalues are then possible,
which give rise to complex modes. Modes at cutoff are shown to be either
TE or TM with real cutoff frequencies. An investigation of the power flow
shows that backward-wave modes may exist as well. Different orthogonal-
ity relations are derived from which the power coupling between complex
modes is investigated.

I. INTRODUCTION

BACKWARD WAVE is one in which the energy

flows in the opposite direction to the wavefronts.
Since, in the absence of reflections, energy must travel
away from the generator, the wavefronts of a backward
wave travel toward the generator. These waves have been
known for a long time to propagate in periodic structures
(see, e.g., [1]). The possibility of backward-wave modes in
a circular waveguide coaxially loaded by a dielectric rod
was first reported in [2]. The conditions under which
backward-wave modes with unity azimuthal dependence
can exist in these waveguides have been investigated (e.g.,
[3], [4]). It has been shown there that the degeneracy of the
TE,,, and TM,,, modes at cutoff is associated with back-
ward-wave propagation above cutoff. Potential applica-
tions of backward-wave modes in such waveguides have
been discussed in [5]. In [6] and [7], it has been shown that
backward-wave modes can also exist in semicircular, rect-
angular, and trough waveguides with dielectric inserts.
Experimental verifications of backward-wave propagation
in some of these structures have been reported (e.g. [7],
(8D)-

Complex modes are modes with complex propagation
constants which can be supported by lossless guiding
structures. Due to the lossless nature of the structure
supporting such modes, they always exist in pairs, with
complex conjugate propagation constants of opposite sign.
The electric field of one mode of any pair does not couple
to the magnetic field of the same mode. Instead, it couples
to the magnetic field of the other mode in such a way that
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the total power carried by the two modes is purely reac-
tive. Complex modes in a circular waveguide containing a
coaxial dielectric rod were first predicted in [9]. It was
shown there that the appearance of a backward-wave
mode in a certain frequency band is associated with the
appearance of complex modes in a lower frequency band.
It has also been shown that complex modes can occur
under certain conditions even if there is no frequency
range in which backward-wave modes can propagate. More
theoretical and experimental investigations on complex
modes in dielectric loaded circular waveguides have been
reported (e.g., [10]-[13)).

Complex modes in a shielded rectangular dielectric image
guide, which can be considered as a rectangular waveguide
with rectangular dielectric insert, have been reported in
[14]. The relevance of complex modes, in conjunction with
the analysis of the transition from a rectangular waveguide
to a shielded dielectric image guide, has been described in
[15], which the reader can refer to for a deeper understand-
ing of the interesting characteristics of complex modes.

We have recently shown that both complex and back-
ward-wave modes can exist in finlines [16], [17]. The effect
of ignoring complex modes on the completeness of the set
of normal modes has been investigated in [18] in conjunc-
tion with finline discontinuity problems. It has been stated
in [17], without proof, that complex and backward-wave
modes are believed to exist in any planar guiding structure
with closed conducting boundaries.

In this contribution, this statement will be proved rigor-
ously for the general case of inhomogeneously and aniso-
tropically filled waveguides with arbitrarily shaped cross
sections.

II. INHOMOGENEOUSLY FILLED WAVEGUIDES

Consider an inhomogeneously filled waveguide of arbi-
trarily shaped cross section S and perfectly conducting
boundaries, as shown in Fig. 1. The longitudinal and the
transverse coordinate vectors are zk and r, respectively.
The filling medium is assumed to be lossless and to have a
real transversally dependent relative permittivity and a
constant relative permeability €, = ¢ (#) and p, =1, respec-
tively. The transverse inhomogeneity of ¢, can be treated
as a polarization current J exciting the corresponding
empty waveguide. This current 1s then given by

J= joeg(e,(r)—1)E. (1)
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Fig. 1. An inhomogeneously filled waveguide with an arbitrarily shaped

cross section.

Let the axial electric (magnetic) field of the nth TM
(TE) mode of the empty waveguide be e,,(r)-exp(—v,.z)
(h,,(r)-exp(—7v,,2)), with corresponding cutoff wave-
number &, (k,,). Then

vte +k2 zn=0 ‘leze:k%e_—k(%
Vthzn+knhhzn=0 ‘Ynzh=kr%h_k(% (2)

where subscripts ¢ and z refer to transverse and longitudi-
nal components, respectively, and k3 = w?€,. Due to the
orthogonal properties of these modes [19], they may be
normalized according to

/S inlimdS =0, fhmhzmdS Bum (3)

where §,,, is the Kronecker delta. It will then be possible
to choose e,, and h,, as real functions.

Expanding the transverse and longitudinal components
of the electromagnetic field with respect to the TM and TE
normal modes of the corresponding empty waveguide,
substituting these expansions into Maxwell’s equations,
and making use of the orthogonality relations (3), one
obtains the interrelations between the different expansion
coefficients as well as their relations to the exciting current
J. This procedure is well described in [20}; thus, only final
expressions are given here.

The transverse and longitudinal components of the elec-
tromagnetic field are expanded as

Et = e_jﬁz<2(_ An/kne)vtezn
+ Z(.]wMOBn/knh)(l; X Vthzn)}
H, = e'jﬁl{Z(_ jBBn/knh)vchﬂ

+ E(jweoDn/kne)(Vtezn X l})}

Ez = e_jﬁzz {(]IBAn + k(%Dn)/kne}ezn

n

Hz = e_jﬁzlv.:knthhzn (4)

n
where a z dependence e /% is assumed; f is the unit
vector in the longitudinal direction and 4,, B,, and D,

are series expansion coefficients. The expansion coeffi-
cients are related to the exciting current J by

e B(y2,D, — jBA,) = (k,./jweq) fSJzezdS

e (A, — jBD,) = (1/jweok,,) fs J,v,e,,dS
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and
e (B> +v3)B,= (~1/k,,;) fs J;-(kxv,h,,) ds.

(5)
Using (1)-(5), it can be shown that the expansion coeffi-

cients 4,, B,, and D, are related by the following infinite
system of linear equations:

([11-K3[ST)D=jB[S]4

(R4~ 8D =~ jons[T]B  (6b)
(K3[R"I-[A"])B~B°B = juc [T]'4.  (6c)

A, B, and D are column vectors with elements 4,, B,,
and D,, respectively, [A”] is a diagonal matrix with ele-
ments k,, s [R€], [R"], and [S] are real symmetric matrices,
[T is the transposed matrix of [T ], both being real, and
[7] is the identity matrix. All matrices and column vectors

of (6) have infinite dimensions. The elements of { R°], [ R"],
[S], and [T'] are given by

Rem = (1/kne me)/ (Vtezn vt zm) dS

(6a)

Rhm = (1/knhkmh)fer(vthzn'vthzm) dS
S
= (1/kne me)/er(eznezm) dS
N

= (1/ Kok sy fs (Ve XV,h,,)-dS.  (7)

At this stage, it is important to state that the above-men-
tioned formulation does not at all represent an easier
alternative for the analysis of the well-known special cases
of inhomogeneously filled waveguides, e.g., dielectric-slab-
loaded rectangular waveguide or dielectric-rod-loaded cir-
cular waveguide. Other methods, e.g., [21]-[23], are much
more promising as far as the special cases for which they
are formulated are concerned. The present formulation, on
the other hand, is valid for the general case of waveguides
with arbitrarily shaped cross section and arbitrary inhomo-
geneity of the filling medium. Furthermore, the general
mode characteristics such as completeness and orthogonal-
ity can be studied directly by using the present approach
rather than the other computationally oriented ones.

A. The Homogeneously Filled Waveguide as a Special Case

If ¢, is constant over the waveguide cross section, the
matrices appearing in (6) take simple forms, namely
[R)=¢,[1], [R']=¢,[1], [S]=¢[A]7, and r1=
where [Af] is a diagonal matrix with elements k2,. Then
(6) reads

(ek3[11-[A])D=8"D (8a)
(e,k3[11-[A"])B=p"B. (8b)

A solution of these equations is either A=0=D, B,=

Bmﬁnm, and B2 =¢,k? — k2,, which represents the mth TE
mode, or B=0, D,=D,$,,, 4,=(jB/¢,)D,5,,, and

Br=¢k2-k2,, which represents the mth TM mode.
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B. Modes at Cutoff
Setting B = 0, (6) reads )

(A ]= K ([R"]=[T)[R]T])}B=0 (%)
([7]-k3[s])p=0. (9b)
These equations mean that there exist two sets of modes at
cutoff. The first set has D=0 and 4+#0, B+#0; the
second set has 4=0, B=0, and D #0. Substituting
B =0 in (4), we find that H,=0, E, =0 for the modes of
the first set, whereas E, =0, H, =0 for the modes of the
second set. We can then conclude that modes at cutoff are
either TE characterized by (9a) or TM characterized by
(9b). Due to the symmetry of the real matrices [A*], [R"],
(TV[Re]™MTY. and [S], the squares of the cutoff wave-
numbers of both TE and TM modes, which appear as the

eigenvalues of (9a) and (9b), respectively, are all real (see,
e.g., [24]).

C. Complex Modes

Eliminating D by using (6a), we get the following eigen-
value equation:

(k2[1]-[S] V)R] jw#o(ké[I]—[S]I)[T]}
— joeo[T]" (k2[R"]-[A"])

[3]-#{4} o

To have a real characteristic matrix, we use the trans-
formation

A=YyA4’ B=(j/VA)B’ (11)

where A is a real positive constant. The eigenvalue equa-
tion (10) then reads

[(kg[sz]—l)[Re] (= wmo/A) (kLI -[S]7HT]
(k3[R"]-[A")

—we\[T]'

The two diagonal submatrices of the characteristic matrix
in (12) are real and symmetric. For the total characteristic
matrix to be symmetric, both matrices [S] and [T'] must
satisfy

([s17* = (k2= N¥2) )] =0 (13)
where Y is the free-space intrinsic admittance. Equation
(13) means that either [T] =0 or the different columns of
[T'] are the eigenvectors of [S]™* which correspond to the
same eigenvalue (k3 — A’Yy) [24]. The vanishing of [T']
leads to the vanishing of the off-diagonal subinatrices of
the characteristic matrix in (12). The TM and TE parts of
the field, which are represented by A’ and B’, respectively,
must then be decoupled. Modes of TE or TM type exist,
however, only in a very limited number of special cases,
e.g., in homogeneously filled waveguides or as modes
without azimuthal dependence in rotational symmetrically
filled circular waveguides (as will be shown later). The
alternative condition on the columns of [T] cannot be
fulfilled even for such simple structures as the dielectric-
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slab-loaded rectangular waveguide. We can conclude then
that the characteristic matrix of (12) is, in general, real and
nonsymmetric. This means that its eigenvalues (82) are
either real or complex conjugate pairs, because they are
zeros of a polynomial of infinite order which has real
coefficients. Complex conjugate pairs of 82 characterize
the so-called complex modes.

D. Orthogonality Relations

Coupling between modes of lossless guiding structures
can be described by either of the two quantities

P,j=f5(e,><h/*)-ds 0,= S(e,th)-dS (14)

where e, and h, are the transverse electric and magnetic
field vectors of the ith and jth modes, respectively, and *
denotes the complex conjugate. Using (2)~(4) and (6a), it
is readily proved that

P, =B*ko(Z,B/B* -~ Y,4:[C]4})
QUZ“Bjko(ZOB:tBj"'YoAf[C]AJ) (15)

where [C] = ([S]™'— k3[I]) ™}, Z,=1/7, is the free-space
intrinsic impedance, and the superscript ¢ denotes the
transpose operation. As is shown in Appendix I, the cou-
pling coefficients P;, and Q, obey the orthogonality rela-
tions

(B2-B**)P,=0 (B2-B?)0,=0. (16)

All nondegenerate modes, both the complex and the non-
complex, are orthogonal in the @ sense. On the other
hand, only noncomplex nondegenerate modes are orthogo-
nal in the P sense. In particular, all complex modes have
P, =0, which means that an individual complex mode can

l-#l3]

carry neither active nor reactive power. Such a mode
behaves in this aspect like modes at cutoff. Pairs of com-
plex modes which have complex conjugate 82 can just
carry reactive power, as will be shown shortly. A similar
result has been obtained for finline complex modes as a
result of numerical investigations [17].

We will now investigate the modes corresponding to the
two complex conjugate eigenvalues B7 and B2 = (B2)*.
From the four possible modes, only two can be excited to
the right of the plane of excitation. If we allow a very small
but still finite amount of loss, it can be proved in a way
similar to that in Appendix I that P, is very small but still
finite. The propagation constants B; and B, of the modes,
which can be excited to the right of the plane of excitation,
must then show a negative imaginary part. (Note that the
time and longitudinal dependence have been assumed to
be e*/“" and e /#% respectively.) The corresponding two
roots of 87 and B7 can then be written as

,81=B’—ja’,,32=—,31 =—B'— ja’

(12)

(17)
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where a’ and B’ are positive. Due to the real nature of the
characteristic matrix of (12), we have

A5=A{* Bf=B{*. (182)
Using (11), we get
A,=AF B,=— B} (18b)
and with (15), (17), and (18b), we obtain
Py =—Pj. (19)

This result has been used in {17] to show, in a general way,
that a pair of complex modes can carry only pure reactive
power so that they behave as a whole evanescently.

E. Backward-Wave Modes
Using (15) and (6a), the total power carried by a single
mode can be written as
P=ko{ (ZeB*)BB* —(Y,/B)D'[C] 'D*). (20)

Referring to (9b), let D, be the eigenvector of the nth TM
cutoff mode, which corresponds to a cutoff wavenumber
k.,. Due to the real symmetric nature of [S], the eigenvec-

tors D,,, n=1,2,---, can be chosen to constitute a real
orthonormal set [24]. The matrix [W], whose rnth column is
D,ie,

(W]=[Dy Do Doye-] Q1)

is then unitary. Because [S] and [C] are commutative, they
share the same set of eigenvectors. It is then easily proved
that D,, is an eigenvector of [C]™}, which corresponds to
an eigenvalue (k2 — k2). Transforming D in (20) accord-
ing to the unitary transformation

D=[w]D

this equation can be written as
P = ko (Zo8*) ZIB,I + (¥ /B) T (kG ~ k2,) D,I?)
(23)

where B, and D, are the nth elements of the column
vectors B and D, respectively.

Equation (23) shows that for propagating modes with
real positive 8, P is also real (as it should be) and can be
either positive, which corresponds to forward-wave modes,
or negative, which corresponds to backward-wave modes.
In particular, let us investigate one of the modes, which
becomes TM at cutoff, near its cutoff wavenumber (say
k,,). From (9), (21), and (22), it is easily shown that
B,—0, D, K8,, as k,— k_,,, where K is a constant. If
we assume that the term (k2 — k2 )-|K|* dominates the
other terms of (23) as k, — k_,,, we get

P_”(koYo/.B)(k(%“k?m)|K|2 as kg = k- (24)

We have now two possibilities, which are shown in Fig. 2.
In the first case, which is shown in Fig. 2(a), the mode is
evanescent for k,<k,, and propagating for k,>k,,.
Equation (24) shows that the mode is capacitive for k; <
k., because B = — j|B| and hence P is negative imagin-
ary. For k,>k_,, the mode represents a forward wave,

(22)

cm?
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Fig. 2. The two possibilities for a mode which becomes TM at cutoff.

Fig. 3. The cross section of a rotational symmetrically filled circular
waveguide.

because P and, hence, the group velocity are positive,
which is confirmed by the increase of B8 versus k. In the
second case, which is shown in Fig. 2(b), the mode is
propagating for k, <k and evanescent for k,>k_,.
Equation (24) shows that the mode is inductive for ky>
k., For ky<k_,, the mode represents a backward wave,
because both P and the group velocity are negative. This is
confirmed now by the decrease of B versus k.

F. Rotational Symmetrically Filled Circular Waveguide

This structure is the general form of the dielectric-rod-
loaded circular waveguide, which most of the early pub-
lications about complex modes dealt with (e.g., [9]-[13]).
The purpose of studying this special case is to explain
some related features, e.g. why must complex modes show
azimuthal dependence?

Consider the rotational symmetrically filled circular
waveguide whose cross section is shown in Fig. 3. The
relative permittivity of the filling medium is assumed to
depend on the radial coordinate r only, ie., €,=¢.(r).
Each mode of the corresponding empty waveguide is char-
acterized by two indices, one for the r dependence and the
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other for the ¢ dependence. The r dependence index will
be used as a subscript, while that of the ¢ dependence is
used as a superscript set in parentheses. The longitudinal
electric and magnetic fields of the different empty-guide
modes can then be written as

e® = V0L (kDr Ysin (i + 39)
h$) = 10 (kr)sin (i + y) (25)

where J, denotes the Bessel function of the first kind and
ith order, and VY, I are normalizing constants. The
column vectors 4, B, and D are written as

i xXo
XM
: (26)
xX®

where the elements of the subvector X are denoted by
XD, Matrices [R¢], [R"], [A¢], [A*], [S], and [T] are
written as

—[z<00>] [2(01>]...[Z<01>]...
[z09] [zWD]...[zW]...
[z]=| (27)

[Z£f0>] [Z@D] .- [26D] -

where the elements of the submatrix [ Z¢/] are denoted by
Z,

Carrying out the integrations in (7) and keeping in mind
that €, is ¢ independent, it is easily shown that all
off-diagonal submatrices vanish. This confirms the fact
that the radial inhomogeneity of the filling medium cou-
ples only those empty-guide modes which have the same
azimuthal dependence. Equation (6) can then be written
for the individual subvectors 40, B® and D, which
represent the ith ¢ dependence, as

(1= R[sO) DO = B[SO14®  (280)
[RYO]A® = DO = = juu [TO]B®  (28)
(K2[RMO]=[A*O]) BO — B2BD = juoe [TW] 4D
(28¢c)
where superscript (ii) has been replaced by just (i).
Modes without ¢ dependence (i.e., those for i = 0) have
[T®]=0. This has the effect of decoupling the TE from

the TM part of the field. Substituting i =0 and [T@]=0
into (28) and eliminating D@, we get

(K311=[SO1 )[R ®]A4® = B4
k2 [RFOT—[A*O\BO® = 2RO
(k3[RMO]~[ArO]) B

Equation (29a) is the eigenvalue equation of the TM
modes, whereas (29b) is that of the TE modes. Both have
real symmetric characteristic matrices, which lead to real
values of B2 for both types of modes. We can conclude

(29a)
(29b)

then that no complex modes can exist in the rotational
symmetrically filled circular waveguide without showing
azimuthal dependence.

G. Rectangular Waveguide with One-Dimensional
Inhomogeneity

This structure represents a generalization of the single-
slab or multislab-loaded rectangular waveguide, which is
well investigated in the literature (see, e.g., [19], [21]-[23]).
It is not, however, intended to produce (or reproduce)
numerical results. The other methods, e.g., [21]-[23], are
much more efficient in this aspect. Instead, we are aiming
to confirm what has been stated in [19], namely that the
modes of such a structure are all noncomplex.

Consider the rectangular waveguide whose cross section
is shown in Fig. 4. The relative permittivity of the filling
medium is assumed to be x dependent. Because each of
the corresponding empty-guide modes is characterized by
two indices, we use the x dependence index as a subscript
and the y dependence index as a superscript set in
parentheses. The longitudinal electric and magnetic field
components of the empty-guide modes are given by

e) =V¥Osin(nmx/a)sin(imy/b)
h) =IMcos(nax /a)cos (imy/b). (30)

In the above equation, i=1,2,---,n=1,2,--- for e{
while i =0,1,2,---,n=0,1,2,--- for h) (i=n=01is ex-
cluded).

Column vectors 4, B, and D can then be written as in
(26). The subvectors of 4 and D, which represent the TM
part of the field, have i=1,2---; their elements have
n=12---. On the other hand, the subvectors of B,
which represent the TE part, have i =0,1,2, - - - and their
elements have n=0,1,2, -, except for the elements of
BO®, which have n=1,2,---.

Matrices [R¢], [R"], [A¢], [A"], [S], and [T'] can also be
written as in (27). The submatrices of [R¢], [A¢], and [S]
have i=1,2,--+, j=1,2,- -+, and their elements have n =
1,2,---,m=1,2,3,---. The submatrices of [R"] and [A"],
on the other hand, have i =0,1,2,-- -, j=0,1,2,- - -, while
their elements have n=0,1,2,---,m=0,1,2,-- -, with (i
= n=0) and (j = m = 0) being excluded. The submatrices
of [T'], which represents the coupling between the TE and
TM parts of the field, have i =1,2,---, j=0,1,2,---, and
their elements have n=1,2,---,m=0,1,2,---, with (j =
m = () being excluded.

Performing the integrations of (7) and taking into
account that ¢, does not depend on y, it is readily proved
that all off-diagonal submatrices or, more precisely, the
submatrices having i # j, vanish. Empty-guide modes with
different y dependence are then decoupled. Equation (6)
can then be separately written for the individual compo-
nents showing the same y dependence. For i=0, (6) is
reduced to

(KS[RMO]~[A*®]) BO = g2BO (31)

where superscript (00) has been replaced by just (0). This
confirms that modes which are y independent must show a
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Fig. 4. The cross section of a rectangular waveguide with x-dependent
€

pure TE field. The characteristic matrix of (31) is real and
symmetric, and all its eigenvalues 82 are then real.

For i+ 0, (6) is reduced to an equation which is similar
to (28) with superscript (i) being replaced by (i). To
simplify the notation, superscript (i) will be omitted from
now on. Equation (6) will then be used in the sense that all
matrices and column vectors denote the ith submatrices
and subvectors, respectively.

The different structures of the matrices and column
vectors representing TE and TM parts leads to some
difficulties, which can be overcome if we carry out the
following modifications. Column vectors 4 and D are
modified to 4 and D, respectively, according to

=~ [0 ]
2=[2]
Let N denote a column vector with zero elements. Matrices

[R¢], [A?], and [S] are then modified to [ R¢], [A¢], and [S],
respectively, according to

s1_ |0 NY
Z1= [N [Z]]‘
The coupling matrix [T] is finally modified to [T] by
A Nt
T]= .

1=
Matrices such as [Z] are in fact singular. They can, how-
ever, be inverted if we use their special algebra, which is

presented in Appendix II. Equation (6) can now be written
with the modified matrices and vectors as

([71-k3[S1)D = jB[S14 (33a)
[Re]d - jBD = — jopo[T1B (33b)
(k3[R*]-[A"]) B~ B2B = jwe [T]'4.  (33¢)

Adjusting the normalization coefficients V, and I, of (30)
according to (3), all matrices of (33) can be written in
terms of only three matrices, namely [A”], [ F*], and [ F°].
[A*] is a diagonal matrix with elements (nw/a),n=
0,1,2, - - - . The elements of [ F*] and [ F¢] are given by

Fs = (2/aknkm)fa€,(x) sin(nwx/a)sin(max/a) dx
0

F¢ = (\/fo,zfom /aknkm)foae,(x)cos(nﬂx/a)

-cos(mmx/a) dx

(32a)

(32b)

(32¢)

(34)
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where €5, =Q2-8),) and k;=k2, =k2, = (in/b)*+
(nm/a)* The matrices of (33) are related to [A”], [ F*], and
[F€] by

[A"] = (im/b) 1]+ AT
[Ae] = (in/b)’[ 1]+ [ A"
[R"] = [A"][F*][ A"+ (im/b) [ F<]
[Re] = [A"][Fe][A"]+ (im/b) [ F¥]
[ST=[F"]
[T]= Ga/b)([F°IIAT-[A]LFD). (39)
Now let ¥ and I® be two column vectors whose
elements are proportional to the series expansion coeffi-
cients of the electric and magnetic field x components E,
and H,, respectively. Using (4), these vectors are related to
A, B, and D by
V@ = j[A*| 4+ wu(in/b)B
I =B[A"]| B+ we,(im/b)D. (36)
Substituting (35) into (33) and using (36), the following
two decoupled equations are obtained:
[A(k3[S1-[ID) T =A™
(kLA ] = [ AL F] A [ Fe]p ™
=(B%+(im/b)*)¥ ™. (37b)

Equations (37a) and (37b) are, in fact, the eigenvalue
equations of the LSE and LSM modes, respectively [19].
Both have real symmetric characteristic matrices, which
means that all eigenvalues are real. Equations (31) and (37)
confirm what has been formulated in [19] by using a
completely different approach, namely that the modes of a
rectangular waveguide with one-dimensional inhomogene-
ity are of either the LSE or the LSM type and that they are
always noncomplex modes; ie., they always have real
values of 82

(37a)

III. HOMOGENEOUSLY FILLED WAVEGUIDES WITH
ANISOTROPIC MEDIA

Consider now the waveguide shown in Fig. 1 being
homogenecously filled with a medium with permittivity
tensor

€, +jk 0
[]=|-/k ¢ o0 (38)
0 0 €

z

The relative permeability is still assumed to be unity.
Equation (1) then reads

J = joe(le,]-[I])E (39)
where [I] is the idem factor (unit dyadic). The longitudinal
and transverse components of the polarization current J
can then be written as

Jz = waO(ez _1)E

z

.f,=jweo{(c,—1)E,+jx(EtXi(')}. (40)
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Substituting (4) and (40) into Maxwell’s equations and
making use of (2) and (3), the following system of matrix
equations is obtained, which relates the column vectors A4,
B, and D:

jBe. A= ([A*]—e,k3[I])D (41a)
— jBD=—wpk[U]B (41b)
[U{[A"]+(B%—¢,k3)[I]} B=wegrd. (41c)

Here, [U] is a real nonsymmetric matrix whose elements
are given by
(Jnm = (1/knekmh)/;(vtezn'vthzm) as. (42)
Due to the individual completeness property of the
infinite sets {e,,} and {4,,,}, each e,, can be expanded
over the set {4,,} and vice versa. The series expansion
coefficients for both cases are proportional to U,,,. Carry-
ing out the gradient operation on these expansions and
taking care of the step discontinuities which may exist at
the contour enclosing the guide cross section, the following
identity can be proved:

[UI[A"] = [A°][U]. (43)

Substituting (43) into (41), the following eigenvalue equa-
tion is obtained:

(e./e)(eko[I1=[A1)  wpo(x/e,)(ekF[1]-[A%])
wegk[I] (ek3[1]-[2])

'[[1713]=52[[1713]' (44)

Its characteristic matrix is again real and nonsymmetric.
Complex modes are consequently possible in anisotropi-
cally filled waveguides.

Most of the results which have been obtained for inho-
mogeneously filled wavegnides are equally valid for an-
isotropically filled waveguides. Modes at cutoff and
backward-wave modes in both structures have similar
characteristics. Hence, no further investigations are needed
for anisotropically filled waveguides.

IV. CONCLUSIONS

Inhomogeneously filled and anisotropically filled loss-
less waveguides of arbitrarily shaped cross section have
been rigorously analyzed. It has been shown that complex
and backward-wave modes can be supported by these
structures. Modes at cutoff have been shown to have real
cutoff frequencies and to be either of TE or of TM type.
different orthogonality relations have been investigated.
The modes of rotational symmetrically filled circular wave-
guides which show no azimuthal dependence have been
shown to be noncomplex and either TE or TM. Modes of
rectangular waveguides with one-dimensional inhomogene-
ity are either of LSE or of LSM type. No complex modes
can be supported by these structures.

APPENDIX |

To prove the orthogonality relations (16), we rewrite (6)
in the following form:

D, = jB[Cl4 (A1)

[Re]Ai +:8;2[C]A, = jkozo[T]Bz (A2)

([A"]= k3[R"]) B, + B7B, = ~ jkoXo[T]'4, (A3)

where subscript i denotes the ith mode. Conjugating (A2)

for the jth mode and premultiplying by Y,4/, we get
Yod;[Re]A} + Y B*?4;[C A} = jkoA{[T]B*. (A4)
Transposing (A3) for the ith mode and postmultiplying by
Z,B* results in
ZoB/([A"] = k3[R"]) B> + Z,B'B/B* = — jk,A![T]B*.
(A5)
By adding (A4) and (AS5), we find
ZO,BIZB,’BJ* + YoB* A'[C4 ¥
== Z,B/([A"] - K3[R"]) B*
—Y,A4 [Re]A* (A6)

Subscripts i and j in (A6) can be interchanged. Taking
then the transposed conjugate form results in

ZyB* 2B,‘Bj’" + YO,BfAﬁ[C]A;“
=~ Z,B!([N']- K3 [R"]) B
~ Yod![R*] 47. (A7)
From a comparison between (A6) and (A7), we find now
(B2-B**)(Z,B/B* —Y,4'[Cla*) =0. (AS8)
The procedure described so far is repeated but without

taking the complex conjugate forms. This yields

(B2—B2)(Z,B'B +Y,4/[C]4,)=0.  (A9)

The orihogonality relations (16) now follow directly from a
comparison between (AS8), (A9), and (15).

APPENDIX I

Let [K] and [L] be (N X N) square matrices and [M]
be an (N X(N +1)) matrix. Let also X and Y be an
(N X1) and an ((N +1)X1) column vector, respectively,
and let N be an (N X1) column vector whose elements
are all zero. Using (32), X, Y, and N are all (N+1)x1)
column vectors, while [K ], [L], and [M [M]are all (N+1)X
(N +1)) square matrices. We will now prove some identi-

ties:
=8 WS 3 ]
- (IKTTZ). (A10)

In particular, if [L] =[K 174 L] plays the same role as the
inverse of [K] with respect to the modified identity ma-
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‘trix[f]:
s o [0 N ][o]_[ o
KT X= ] [KJ]'[X]‘[[K]-X]
- ((KTx) (a11)
- N*! 0
La]-¥ = [M]] [
= (MTY) | (A12)
) 2= (5 [m1]-[ 3]
=[M]"X (A13)
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